skip to main content


Search for: All records

Creators/Authors contains: "Ferris, Andrew J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Topological line defects are ubiquitous in nature and appear at all physical scales, including in condensed matter systems, nuclear physics, and cosmology. Particularly useful systems to study line defects are nematic liquid crystals (LCs), where they describe singular or nonsingular frustrations in orientational order and are referred to as disclinations. In nematic LCs, line defects could be relatively simply created, manipulated, and observed. We consider cases where disclinations are stabilized either topologically in plane-parallel confinements or by chirality. In the former case, we report on studies in which defect core transformations are investigated, the intriguing dynamics of strength disclinations in LCs exhibiting negative dielectric anisotropy, and stabilization and manipulation of assemblies of defects. For the case of chiral nematics, we consider nanoparticle-driven stabilization of defect lattices. The resulting line defect assemblies could pave the way to several applications in photonics, sensitive detectors, and information storage devices. These excitations, moreover, have numerous analogs in other branches of physics. Studying their universal properties in nematics could deepen understanding of several phenomena, which are still unresolved at the fundamental level. 
    more » « less
  2. null (Ed.)
  3. A substrate was patterned with two pairs of half-integer strength topological defects, (+½, +½) and (+½, −½). In a sufficiently thick cell, a disclination line runs in an arch above the substrate connecting the two half integer defects within each pair. The director around the disclination line for the like-sign pair must rotate in 3D, whereas for the opposite-sign defect pair the director lies in the xy-plane parallel to the substrate. For a negative dielectric anisotropy nematic, an electric field applied normal to the substrate drives the director into the xy-plane, forcing the arch of the disclination line of the like-sign pair to become extended along the z-axis. For sufficiently large field the arch splits, resulting in two nearly parallel disclination lines traversing the cell from one substrate to the other. The opposite-sign defect pair is largely unaffected by the electric field as the director already already lies in the xy-plane. Experimental results are presented, which are consistent with numerical simulations. 
    more » « less
  4. Chiral organosilica particles of size ~200 nm were synthesized from an enantio-pure multi-armed chiral D-maltose organosilane precursor in the absence of co-condensation with an achiral monomer. Two distinct experiments were performed to demonstrate the particles’ ability to induce conformational deracemization of a host liquid crystal. The first involves an electric field-induced tilt of the liquid crystal director in the deracemized smectic-A phase. The other involves domain wall curvature separating left- and right-handed liquid crystal helical pitch domains imposed by the cells’ substrates. The results demonstrate unequivocally that enantio-pure organosilica nanoparticles can be synthesized and can induce chirality in a host. 
    more » « less